Compute effect size log odds
from effect size d
.
convert_d2logit( d, se, v, totaln, es.type = c("logit", "cox"), info = NULL, study = NULL )
d | The effect size |
---|---|
se | The standard error of |
v | The variance of |
totaln | A vector of total sample size(s). |
es.type | Type of effect size odds ratio that should be returned.
May be |
info | String with information on the transformation. Used for the print-method. Usually, this argument can be ignored |
study | Optional string with the study name. Using |
The effect size es
, the standard error se
, the variance
of the effect size var
, the lower and upper confidence limits
ci.lo
and ci.hi
, the weight factor w
and the
total sample size totaln
.
Conversion from d
to odds ratios can be done with two
methods:
es.type = "logit"
uses the Hasselblad and Hedges logit method.
es.type = "cox"
uses the modified logit method as proposed by Cox. This method performs slightly better for rare or frequent events, i.e. if the success rate is close to 0 or 1.
Effect size, variance, standard error and confidence intervals are
returned on the log-scale. To get the odds ratios and exponentiated
confidence intervals, use convert_d2or
.
Lipsey MW, Wilson DB. 2001. Practical meta-analysis. Thousand Oaks, Calif: Sage Publications
Wilson DB. 2016. Formulas Used by the "Practical Meta-Analysis Effect Size Calculator". Unpublished manuscript: George Mason University
Cox DR. 1970. Analysis of binary data. New York: Chapman & Hall/CRC
Hasselblad V, Hedges LV. 1995. Meta-analysis of screening and diagnostic tests. Psychological Bulletin 117(1): 167–178. doi: 10.1037/0033-2909.117.1.167
# to logits convert_d2logit(0.7, se = 0.5)#> #> Effect Size Calculation for Meta Analysis #> #> Conversion: effect size d to effect size logit #> Effect Size: 1.2697 #> Standard Error: 0.9069 #> Variance: 0.8225 #> Lower CI: -0.5078 #> Upper CI: 3.0472 #> Weight: 1.2159# to Cox-logits convert_d2logit(0.7, v = 0.25, es.type = "cox")#> #> Effect Size Calculation for Meta Analysis #> #> Conversion: effect size d to effect size logit(Cox) #> Effect Size: 1.1550 #> Standard Error: 0.8253 #> Variance: 0.6812 #> Lower CI: -0.4627 #> Upper CI: 2.7727 #> Weight: 1.4680