Convert between different effect sized.
hedges_g(d, totaln) eta_squared(d, r, f, or, logit) cohens_f(d, r, eta, or, logit) cohens_d(f, r, eta, or, logit) pearsons_r(d, eta, f, or, logit) log_odds(d, eta, f, or, r) odds_ratio(d, eta, f, logit, r)
d, r, f, eta, or, logit | A scalar or vector with effect size(s). |
---|---|
totaln | A vector of total sample size(s). |
The requested effect size.
Lipsey MW, Wilson DB. 2001. Practical meta-analysis. Thousand Oaks, Calif: Sage Publications
Wilson DB. 2016. Formulas Used by the "Practical Meta-Analysis Effect Size Calculator". Unpublished manuscript: George Mason University
Hedges LV. 1981. Distribution theory for Glass's estimator of effect size and related estimators. Journal of Educational Statistics 6: 107–128.
Borenstein M, Hedges LV, Higgins JPT, Rothstein HR. 2009. Introduction to Meta-Analysis. Chichester, West Sussex, UK: Wiley
Cohen J. 1988. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Hillsdale, NJ: Erlbaum
# convert from d to Hedges' g or odds ratio hedges_g(d = 0.75, totaln = 50)#> [1] 0.7382199odds_ratio(d = .3)#> [1] 1.723126# convert from odds ratio to eta_squared eta_squared(or = 2.3)#> [1] 0.08707408# convert from f or r to d cohens_d(f = .3)#> [1] 0.6cohens_d(r = .25)#> [1] 0.5163978#> [1] 0.7382199 0.2966790#> [1] 0.1005038 0.2041241 0.3144855