This function returns the value labels of labelled data.

get_labels(
  x,
  attr.only = FALSE,
  values = NULL,
  non.labelled = FALSE,
  drop.na = TRUE,
  drop.unused = FALSE
)

Arguments

x

A data frame with variables that have value label attributes (e.g. from an imported SPSS, SAS or STATA data set, via read_spss, read_sas or read_stata); a variable (vector) with value label attributes; or a list of variables with values label attributes. If x has no label attributes, factor levels are returned. See 'Examples'.

attr.only

Logical, if TRUE, labels are only searched for in the the vector's attributes; else, if attr.only = FALSE and x has no label attributes, factor levels or string values are returned. See 'Examples'.

values

String, indicating whether the values associated with the value labels are returned as well. If values = "as.name" (or values = "n"), values are set as names attribute of the returned object. If values = "as.prefix" (or values = "p"), values are included as prefix to each label. See 'Examples'.

non.labelled

Logical, if TRUE, values without labels will also be included in the returned labels (see fill_labels).

drop.na

Logical, whether labels of tagged NA values (see tagged_na()) should be included in the return value or not. By default, labelled (tagged) missing values are not returned. See get_na for more details on tagged NA values.

drop.unused

Logical, if TRUE, unused labels will be removed from the return value.

Value

Either a list with all value labels from all variables if x

is a data.frame or list; a string with the value labels, if x is a variable; or NULL if no value label attribute was found.

See also

See vignette Labelled Data and the sjlabelled-Package for more details; set_labels to manually set value labels, get_label to get variable labels and get_values to retrieve the values associated with value labels.

Examples

# import SPSS data set
# mydat <- read_spss("my_spss_data.sav")

# retrieve variable labels
# mydat.var <- get_label(mydat)

# retrieve value labels
# mydat.val <- get_labels(mydat)

data(efc)
get_labels(efc$e42dep)
#> [1] "independent"          "slightly dependent"   "moderately dependent"
#> [4] "severely dependent"  

# simple barplot
barplot(table(efc$e42dep))

# get value labels to annotate barplot
barplot(table(efc$e42dep),
        names.arg = get_labels(efc$e42dep),
        main = get_label(efc$e42dep))


# include associated values
get_labels(efc$e42dep, values = "as.name")
#>                      1                      2                      3 
#>          "independent"   "slightly dependent" "moderately dependent" 
#>                      4 
#>   "severely dependent" 

# include associated values
get_labels(efc$e42dep, values = "as.prefix")
#> [1] "[1] independent"          "[2] slightly dependent"  
#> [3] "[3] moderately dependent" "[4] severely dependent"  

# get labels from multiple variables
get_labels(list(efc$e42dep, efc$e16sex, efc$e15relat))
#> [[1]]
#> [1] "independent"          "slightly dependent"   "moderately dependent"
#> [4] "severely dependent"  
#> 
#> [[2]]
#> [1] "male"   "female"
#> 
#> [[3]]
#> [1] "spouse/partner"          "child"                  
#> [3] "sibling"                 "daughter or son -in-law"
#> [5] "ancle/aunt"              "nephew/niece"           
#> [7] "cousin"                  "other, specify"         
#> 


# create a dummy factor
f1 <- factor(c("hi", "low", "mid"))
# search for label attributes only
get_labels(f1, attr.only = TRUE)
#> NULL
# search for factor levels as well
get_labels(f1)
#> [1] "hi"  "low" "mid"

# same for character vectors
c1 <- c("higher", "lower", "mid")
# search for label attributes only
get_labels(c1, attr.only = TRUE)
#> NULL
# search for string values as well
get_labels(c1)
#> [1] "higher" "lower"  "mid"   


# create vector
x <- c(1, 2, 3, 2, 4, NA)
# add less labels than values
x <- set_labels(x, labels = c("yes", "maybe", "no"), force.values = FALSE)
#> "x" has more values than "labels", hence not all values are labelled.
# get labels for labelled values only
get_labels(x)
#> [1] "yes"   "maybe" "no"   
# get labels for all values
get_labels(x, non.labelled = TRUE)
#> [1] "yes"   "maybe" "no"    "4"    


# get labels, including tagged NA values
library(haven)
x <- labelled(c(1:3, tagged_na("a", "c", "z"), 4:1),
              c("Agreement" = 1, "Disagreement" = 4, "First" = tagged_na("c"),
                "Refused" = tagged_na("a"), "Not home" = tagged_na("z")))
# get current NA values
x
#> <labelled<double>[10]>
#>  [1]     1     2     3 NA(a) NA(c) NA(z)     4     3     2     1
#> 
#> Labels:
#>  value        label
#>      1    Agreement
#>      4 Disagreement
#>  NA(c)        First
#>  NA(a)      Refused
#>  NA(z)     Not home
get_labels(x, values = "n", drop.na = FALSE)
#>              1              4          NA(c)          NA(a)          NA(z) 
#>    "Agreement" "Disagreement"        "First"      "Refused"     "Not home" 


# create vector with unused labels
data(efc)
efc$e42dep <- set_labels(
  efc$e42dep,
  labels = c("independent" = 1, "dependent" = 4, "not used" = 5)
)
get_labels(efc$e42dep)
#> [1] "independent" "dependent"   "not used"   
get_labels(efc$e42dep, drop.unused = TRUE)
#> [1] "independent" "dependent"  
get_labels(efc$e42dep, non.labelled = TRUE, drop.unused = TRUE)
#> [1] "independent" "2"           "3"           "dependent"