Compute effect size d from effect size OR.
convert_or2d( or, se, v, totaln, es.type = c("d", "cox.d", "g", "f", "eta"), info = NULL, study = NULL )
| or | The effect size as odds ratio. |
|---|---|
| se | The standard error of |
| v | The variance of |
| totaln | A vector of total sample size(s). |
| es.type | Type of effect size that should be returned.
|
| info | String with information on the transformation. Used for the print-method. Usually, this argument can be ignored |
| study | Optional string with the study name. Using |
The effect size es, the standard error se, the variance
of the effect size var, the lower and upper confidence limits
ci.lo and ci.hi, the weight factor w and the
total sample size totaln.
While or is the exponentiated log odds, the variance or standard
error need to be on the log-scale!
Lipsey MW, Wilson DB. 2001. Practical meta-analysis. Thousand Oaks, Calif: Sage Publications
Wilson DB. 2016. Formulas Used by the "Practical Meta-Analysis Effect Size Calculator". Unpublished manuscript: George Mason University
convert_or2d(3.56, se = 0.91)#> #> Effect Size Calculation for Meta Analysis #> #> Conversion: effect size OR to effect size d #> Effect Size: 0.7001 #> Standard Error: 0.5017 #> Variance: 0.2517 #> Lower CI: -0.2833 #> Upper CI: 1.6834 #> Weight: 3.9728#> #> Effect Size Calculation for Meta Analysis #> #> Conversion: effect size d to effect size OR #> Effect Size: 3.5596 #> Standard Error: 0.9069 #> Variance: 0.8225 #> Lower CI: 0.6018 #> Upper CI: 21.0553 #> Weight: 1.2159