Compute effect size from Chi-Square coefficient
esc_chisq( chisq, p, totaln, es.type = c("d", "g", "or", "logit", "r", "f", "eta", "cox.or", "cox.log"), study = NULL )
chisq | The chi-squared value. One of |
---|---|
p | The p-value of the chi-squared or phi-value. |
totaln | A vector of total sample size(s). |
es.type | Type of effect size that should be returned.
|
study | Optional string with the study name. Using |
The effect size es
, the standard error se
, the variance
of the effect size var
, the lower and upper confidence limits
ci.lo
and ci.hi
, the weight factor w
and the
total sample size totaln
.
This effect size should only be used for data from 2x2 frequency
tables. Furthermore, use this approximation for the effect size only,
if information about the 2x2 frequencies or proportions are not available.
Else, esc_2x2
or esc_bin_prop
provide better
estimates for the effect size.
Lipsey MW, Wilson DB. 2001. Practical meta-analysis. Thousand Oaks, Calif: Sage Publications
Wilson DB. 2016. Formulas Used by the "Practical Meta-Analysis Effect Size Calculator". Unpublished manuscript: George Mason University
# Effect size based on chi-squared value esc_chisq(chisq = 9.9, totaln = 100)#> #> Effect Size Calculation for Meta Analysis #> #> Conversion: chi-squared-value to effect size d #> Effect Size: 0.6630 #> Standard Error: 0.2107 #> Variance: 0.0444 #> Lower CI: 0.2500 #> Upper CI: 1.0759 #> Weight: 22.5250# Effect size based on p-value of chi-squared esc_chisq(p = .04, totaln = 100)#> #> Effect Size Calculation for Meta Analysis #> #> Conversion: chi-squared-value to effect size d #> Effect Size: 0.4197 #> Standard Error: 0.2044 #> Variance: 0.0418 #> Lower CI: 0.0192 #> Upper CI: 0.8202 #> Weight: 23.9455