Compute effect size from Student's t-test for independent samples.
esc_t( t, p, totaln, grp1n, grp2n, es.type = c("d", "g", "or", "logit", "r", "f", "eta", "cox.or", "cox.log"), study = NULL, ... )
t | The t-value of the t-test. One of |
---|---|
p | The p-value of the t-test. One of |
totaln | Total sample size. Either |
grp1n | Treatment group sample size. |
grp2n | Control group sample size. |
es.type | Type of effect size that should be returned.
|
study | Optional string with the study name. Using |
... | Other parameters, passed down to further functions. For internal use only, can be ignored. |
The effect size es
, the standard error se
, the variance
of the effect size var
, the lower and upper confidence limits
ci.lo
and ci.hi
, the weight factor w
and the
total sample size totaln
.
This function only applies to independent sample t-tests, either
equal or unequal sample sizes. It can't be used for t-values from
dependent or paired t-tests, or t-values from other statistical procedures
(like regressions).
If es.type = "r"
, Fisher's transformation for the effect size
r
and their confidence intervals are also returned.
Lipsey MW, Wilson DB. 2001. Practical meta-analysis. Thousand Oaks, Calif: Sage Publications
Wilson DB. 2016. Formulas Used by the "Practical Meta-Analysis Effect Size Calculator". Unpublished manuscript: George Mason University
# unequal sample size esc_t(t = 3.3, grp1n = 100, grp2n = 150)#> #> Effect Size Calculation for Meta Analysis #> #> Conversion: t-value to effect size d #> Effect Size: 0.4260 #> Standard Error: 0.1305 #> Variance: 0.0170 #> Lower CI: 0.1703 #> Upper CI: 0.6818 #> Weight: 58.7211# equal sample size esc_t(t = 3.3, totaln = 200)#> #> Effect Size Calculation for Meta Analysis #> #> Conversion: t-value to effect size d #> Effect Size: 0.4667 #> Standard Error: 0.1433 #> Variance: 0.0205 #> Lower CI: 0.1858 #> Upper CI: 0.7476 #> Weight: 48.6748# unequal sample size, with p-value esc_t(p = 0.03, grp1n = 100, grp2n = 150)#> #> Effect Size Calculation for Meta Analysis #> #> Conversion: t-value to effect size d #> Effect Size: 0.2818 #> Standard Error: 0.1297 #> Variance: 0.0168 #> Lower CI: 0.0275 #> Upper CI: 0.5360 #> Weight: 59.4337# equal sample size, with p-value esc_t(p = 0.03, totaln = 200)#> #> Effect Size Calculation for Meta Analysis #> #> Conversion: t-value to effect size d #> Effect Size: 0.3091 #> Standard Error: 0.1423 #> Variance: 0.0202 #> Lower CI: 0.0303 #> Upper CI: 0.5880 #> Weight: 49.4098