Recode numeric variables into equal ranged, grouped factors,
i.e. a variable is cut into a smaller number of groups, where each group
has the same value range. group_labels()
creates the related value
labels. group_var_if()
and group_labels_if()
are scoped
variants of group_var()
and group_labels()
, where grouping
will be applied only to those variables that match the logical condition
of predicate
.
group_var(
x,
...,
size = 5,
as.num = TRUE,
right.interval = FALSE,
n = 30,
append = TRUE,
suffix = "_gr"
)
group_var_if(
x,
predicate,
size = 5,
as.num = TRUE,
right.interval = FALSE,
n = 30,
append = TRUE,
suffix = "_gr"
)
group_labels(x, ..., size = 5, right.interval = FALSE, n = 30)
group_labels_if(x, predicate, size = 5, right.interval = FALSE, n = 30)
A vector or data frame.
Optional, unquoted names of variables that should be selected for
further processing. Required, if x
is a data frame (and no
vector) and only selected variables from x
should be processed.
You may also use functions like :
or tidyselect's
select-helpers.
See 'Examples' or package-vignette.
Numeric; group-size, i.e. the range for grouping. By default,
for each 5 categories of x
a new group is defined, i.e. size = 5
.
Use size = "auto"
to automatically resize a variable into a maximum
of 30 groups (which is the ggplot-default grouping when plotting
histograms). Use n
to determine the amount of groups.
Logical, if TRUE
, return value will be numeric, not a factor.
Logical; if TRUE
, grouping starts with the lower
bound of size
. See 'Details'.
Sets the maximum number of groups that are defined when auto-grouping is on
(size = "auto"
). Default is 30. If size
is not set to "auto"
,
this argument will be ignored.
Logical, if TRUE
(the default) and x
is a data frame,
x
including the new variables as additional columns is returned;
if FALSE
, only the new variables are returned.
Indicates which suffix will be added to each dummy variable.
Use "numeric"
to number dummy variables, e.g. x_1,
x_2, x_3 etc. Use "label"
to add value label,
e.g. x_low, x_mid, x_high. May be abbreviated.
A predicate function to be applied to the columns. The
variables for which predicate
returns TRUE
are selected.
For group_var()
, a grouped variable, either as numeric or as factor (see paramter as.num
). If x
is a data frame, only the grouped variables will be returned.
For group_labels()
, a string vector or a list of string vectors containing labels based on the grouped categories of x
, formatted as "from lower bound to upper bound", e.g. "10-19" "20-29" "30-39"
etc. See 'Examples'.
If size
is set to a specific value, the variable is recoded
into several groups, where each group has a maximum range of size
.
Hence, the amount of groups differ depending on the range of x
.
If size = "auto"
, the variable is recoded into a maximum of
n
groups. Hence, independent from the range of
x
, always the same amount of groups are created, so the range
within each group differs (depending on x
's range).
right.interval
determins which boundary values to include when
grouping is done. If TRUE
, grouping starts with the lower
bound of size
. For example, having a variable ranging from
50 to 80, groups cover the ranges from 50-54, 55-59, 60-64 etc.
If FALSE
(default), grouping starts with the upper bound
of size
. In this case, groups cover the ranges from
46-50, 51-55, 56-60, 61-65 etc. Note: This will cover
a range from 46-50 as first group, even if values from 46 to 49
are not present. See 'Examples'.
If you want to split a variable into a certain amount of equal
sized groups (instead of having groups where values have all the same
range), use the split_var
function!
group_var()
also works on grouped data frames (see group_by
).
In this case, grouping is applied to the subsets of variables
in x
. See 'Examples'.
Variable label attributes (see, for instance,
set_label
) are preserved. Usually you should use
the same values for size
and right.interval
in
group_labels()
as used in the group_var
function if you want
matching labels for the related recoded variable.
split_var
to split variables into equal sized groups,
group_str
for grouping string vectors or
rec_pattern
and rec
for another convenient
way of recoding variables into smaller groups.
age <- abs(round(rnorm(100, 65, 20)))
age.grp <- group_var(age, size = 10)
hist(age)
hist(age.grp)
age.grpvar <- group_labels(age, size = 10)
table(age.grp)
#> age.grp
#> 1 2 3 4 5 6 7 8 9
#> 1 4 10 21 22 19 10 9 4
print(age.grpvar)
#> [1] "10-19" "30-39" "40-49" "50-59" "60-69" "70-79" "80-89"
#> [8] "90-99" "100-109"
# histogram with EUROFAMCARE sample dataset
# variable not grouped
library(sjlabelled)
data(efc)
hist(efc$e17age, main = get_label(efc$e17age))
# bar plot with EUROFAMCARE sample dataset
# grouped variable
ageGrp <- group_var(efc$e17age)
ageGrpLab <- group_labels(efc$e17age)
barplot(table(ageGrp), main = get_label(efc$e17age), names.arg = ageGrpLab)
# within a pipe-chain
library(dplyr)
efc %>%
select(e17age, c12hour, c160age) %>%
group_var(size = 20)
#> e17age c12hour c160age e17age_gr c12hour_gr c160age_gr
#> 1 83 16 56 2 1 3
#> 2 88 148 54 2 8 3
#> 3 82 70 80 2 4 5
#> 4 67 168 69 1 9 4
#> 5 84 168 47 2 9 3
#> 6 85 16 56 2 1 3
#> 7 74 161 61 1 9 4
#> 8 87 110 67 2 6 4
#> 9 79 28 59 1 2 3
#> 10 83 40 49 2 3 3
#> 11 68 100 66 1 6 4
#> 12 97 25 47 2 2 3
#> 13 80 25 58 2 2 3
#> 14 75 24 75 1 2 4
#> 15 82 56 49 2 3 3
#> 16 89 20 56 2 2 3
#> 17 80 25 75 2 2 4
#> 18 72 126 70 1 7 4
#> 19 94 168 52 2 9 3
#> 20 79 118 48 1 6 3
#> 21 89 150 58 2 8 3
#> 22 67 50 65 1 3 4
#> 23 94 18 49 2 1 3
#> 24 83 168 60 2 9 4
#> 25 85 15 55 2 1 3
#> 26 80 168 62 2 9 4
#> 27 88 12 68 2 1 4
#> 28 76 7 76 1 1 4
#> 29 84 35 58 2 2 3
#> 30 95 168 65 2 9 4
#> 31 88 150 63 2 8 4
#> 32 87 168 79 2 9 4
#> 33 89 168 65 2 9 4
#> 34 80 119 74 2 6 4
#> 35 75 168 76 1 9 4
#> 36 82 168 73 2 9 4
#> 37 69 168 67 1 9 4
#> 38 91 28 62 2 2 4
#> 39 86 168 80 2 9 5
#> 40 86 30 49 2 2 3
#> 41 84 14 46 2 1 3
#> 42 69 168 68 1 9 4
#> 43 67 168 62 1 9 4
#> 44 67 50 65 1 3 4
#> 45 66 168 63 1 9 4
#> 46 79 24 81 1 2 5
#> 47 72 168 72 1 9 4
#> 48 65 42 64 1 3 4
#> 49 75 154 73 1 8 4
#> 50 87 60 73 2 4 4
#> 51 68 168 64 1 9 4
#> 52 75 168 67 1 9 4
#> 53 65 24 60 1 2 4
#> 54 67 168 64 1 9 4
#> 55 81 150 85 2 8 5
#> 56 83 168 55 2 9 3
#> 57 NA 168 72 NA 9 4
#> 58 82 168 52 2 9 3
#> 59 79 168 63 1 9 4
#> 60 72 168 69 1 9 4
#> 61 87 128 61 2 7 4
#> 62 85 168 79 2 9 4
#> 63 88 11 64 2 1 4
#> 64 74 50 44 1 3 3
#> 65 87 80 59 2 5 3
#> 66 88 15 52 2 1 3
#> 67 76 7 46 1 1 3
#> 68 81 21 59 2 2 3
#> 69 80 168 83 2 9 5
#> 70 68 24 76 1 2 4
#> 71 82 6 31 2 1 2
#> 72 NA 30 60 NA 2 4
#> 73 91 168 57 2 9 3
#> 74 66 42 63 1 3 4
#> 75 89 30 59 2 2 3
#> 76 79 85 72 1 5 4
#> 77 69 35 47 1 2 3
#> 78 92 70 56 2 4 3
#> 79 75 9 47 1 1 3
#> 80 76 168 69 1 9 4
#> 81 77 77 74 1 4 4
#> 82 NA 24 67 NA 2 4
#> 83 76 91 72 1 5 4
#> 84 76 6 48 1 1 3
#> 85 79 22 55 1 2 3
#> 86 77 168 57 1 9 3
#> 87 67 168 62 1 9 4
#> 88 66 168 70 1 9 4
#> 89 78 168 34 1 9 2
#> 90 84 50 55 2 3 3
#> 91 79 40 69 1 3 4
#> 92 77 9 69 1 1 4
#> 93 66 25 60 1 2 4
#> 94 94 14 66 2 1 4
#> 95 65 49 60 1 3 4
#> 96 90 5 54 2 1 3
#> 97 66 7 64 1 1 4
#> 98 90 21 75 2 2 4
#> 99 85 24 80 2 2 5
#> 100 77 7 49 1 1 3
#> 101 76 168 68 1 9 4
#> 102 66 168 64 1 9 4
#> 103 76 4 72 1 1 4
#> 104 80 168 54 2 9 3
#> 105 89 168 62 2 9 4
#> 106 69 15 65 1 1 4
#> 107 75 168 75 1 9 4
#> 108 75 168 77 1 9 4
#> 109 80 20 50 2 2 3
#> 110 80 59 54 2 3 3
#> 111 74 24 72 1 2 4
#> 112 82 7 46 2 1 3
#> 113 91 100 61 2 6 4
#> 114 80 168 83 2 9 5
#> 115 74 168 44 1 9 3
#> 116 90 28 67 2 2 4
#> 117 83 20 61 2 2 4
#> 118 82 50 78 2 3 4
#> 119 73 89 77 1 5 4
#> 120 84 168 75 2 9 4
#> 121 90 12 61 2 1 4
#> 122 65 24 65 1 2 4
#> 123 84 91 74 2 5 4
#> 124 72 168 63 1 9 4
#> 125 95 168 66 2 9 4
#> 126 67 168 62 1 9 4
#> 127 81 11 49 2 1 3
#> 128 92 35 55 2 2 3
#> 129 83 10 45 2 1 3
#> 130 74 125 76 1 7 4
#> 131 91 140 65 2 8 4
#> 132 78 28 56 1 2 3
#> 133 81 84 75 2 5 4
#> 134 76 15 45 1 1 3
#> 135 93 15 59 2 1 3
#> 136 97 14 66 2 1 4
#> 137 93 24 61 2 2 4
#> 138 81 4 50 2 1 3
#> 139 75 140 75 1 8 4
#> 140 84 168 76 2 9 4
#> 141 78 6 35 1 1 2
#> 142 84 10 42 2 1 3
#> 143 87 20 65 2 2 4
#> 144 83 15 81 2 1 5
#> 145 94 65 43 2 4 3
#> 146 85 35 76 2 2 4
#> 147 70 105 67 1 6 4
#> 148 69 50 63 1 3 4
#> 149 76 168 56 1 9 3
#> 150 83 77 49 2 4 3
#> 151 91 168 55 2 9 3
#> 152 90 42 60 2 3 4
#> 153 87 4 59 2 1 3
#> 154 91 168 62 2 9 4
#> 155 72 168 62 1 9 4
#> 156 73 42 79 1 3 4
#> 157 79 6 54 1 1 3
#> 158 84 168 57 2 9 3
#> 159 82 70 74 2 4 4
#> 160 65 15 67 1 1 4
#> 161 78 30 51 1 2 3
#> 162 94 9 55 2 1 3
#> 163 91 16 56 2 1 3
#> 164 NA 35 58 NA 2 3
#> 165 80 28 43 2 2 3
#> 166 70 168 71 1 9 4
#> 167 84 9 50 2 1 3
#> 168 82 168 57 2 9 3
#> 169 76 15 52 1 1 3
#> 170 77 6 53 1 1 3
#> 171 66 14 60 1 1 4
#> 172 90 35 65 2 2 4
#> 173 76 7 72 1 1 4
#> 174 69 12 64 1 1 4
#> 175 88 50 57 2 3 3
#> 176 71 6 47 1 1 3
#> 177 93 22 62 2 2 4
#> 178 97 35 67 2 2 4
#> 179 84 6 63 2 1 4
#> 180 79 168 77 1 9 4
#> 181 91 28 60 2 2 4
#> 182 84 10 48 2 1 3
#> 183 75 91 73 1 5 4
#> 184 81 8 25 2 1 2
#> 185 77 168 58 1 9 3
#> 186 75 24 50 1 2 3
#> 187 74 168 45 1 9 3
#> 188 92 168 53 2 9 3
#> 189 79 14 59 1 1 3
#> 190 74 28 80 1 2 5
#> 191 76 16 57 1 1 3
#> 192 NA 168 66 NA 9 4
#> 193 84 6 63 2 1 4
#> 194 65 168 56 1 9 3
#> 195 85 28 61 2 2 4
#> 196 75 160 70 1 9 4
#> 197 90 39 62 2 2 4
#> 198 83 15 47 2 1 3
#> 199 87 10 67 2 1 4
#> 200 86 10 64 2 1 4
#> 201 93 17 65 2 1 4
#> 202 92 168 55 2 9 3
#> 203 92 70 66 2 4 4
#> 204 84 50 52 2 3 3
#> 205 83 12 64 2 1 4
#> 206 82 10 49 2 1 3
#> 207 87 168 42 2 9 3
#> 208 89 168 58 2 9 3
#> 209 91 168 87 2 9 5
#> 210 84 28 65 2 2 4
#> 211 93 12 65 2 1 4
#> 212 85 8 63 2 1 4
#> 213 79 21 43 1 2 3
#> 214 84 24 54 2 2 3
#> 215 65 15 42 1 1 3
#> 216 89 8 61 2 1 4
#> 217 84 16 54 2 1 3
#> 218 81 56 47 2 3 3
#> 219 77 42 46 1 3 3
#> 220 65 4 54 1 1 3
#> 221 93 25 58 2 2 3
#> 222 96 35 64 2 2 4
#> 223 90 30 51 2 2 3
#> 224 86 6 57 2 1 3
#> 225 88 110 63 2 6 4
#> 226 79 30 49 1 2 3
#> 227 91 24 66 2 2 4
#> 228 84 14 56 2 1 3
#> 229 71 4 62 1 1 4
#> 230 67 20 29 1 2 2
#> 231 87 10 55 2 1 3
#> 232 84 7 55 2 1 3
#> 233 87 161 81 2 9 5
#> 234 84 28 62 2 2 4
#> 235 86 14 49 2 1 3
#> 236 83 4 43 2 1 3
#> 237 69 50 60 1 3 4
#> 238 75 10 39 1 1 2
#> 239 79 18 41 1 1 3
#> 240 76 15 25 1 1 2
#> 241 76 6 27 1 1 2
#> 242 82 17 26 2 1 2
#> 243 88 14 52 2 1 3
#> 244 90 5 56 2 1 3
#> 245 87 10 29 2 1 2
#> 246 76 30 45 1 2 3
#> 247 76 10 64 1 1 4
#> 248 86 10 47 2 1 3
#> 249 83 84 62 2 5 4
#> 250 89 10 55 2 1 3
#> 251 82 6 70 2 1 4
#> 252 79 15 51 1 1 3
#> 253 67 40 67 1 3 4
#> 254 73 21 23 1 2 2
#> 255 89 11 52 2 1 3
#> 256 95 8 62 2 1 4
#> 257 65 5 33 1 1 2
#> 258 89 12 83 2 1 5
#> 259 83 10 75 2 1 4
#> 260 86 20 60 2 2 4
#> 261 82 12 63 2 1 4
#> 262 93 24 65 2 2 4
#> 263 90 27 60 2 2 4
#> 264 79 14 54 1 1 3
#> 265 97 18 63 2 1 4
#> 266 78 168 58 1 9 3
#> 267 74 14 42 1 1 3
#> 268 86 10 58 2 1 3
#> 269 88 6 55 2 1 3
#> 270 77 21 44 1 2 3
#> 271 76 16 46 1 1 3
#> 272 74 15 38 1 1 2
#> 273 76 20 44 1 2 3
#> 274 71 10 43 1 1 3
#> 275 74 22 34 1 2 2
#> 276 82 35 43 2 2 3
#> 277 82 30 66 2 2 4
#> 278 74 16 46 1 1 3
#> 279 73 24 68 1 2 4
#> 280 67 168 60 1 9 4
#> 281 70 168 35 1 9 2
#> 282 70 40 38 1 3 2
#> 283 70 40 41 1 3 3
#> 284 67 50 40 1 3 3
#> 285 80 20 39 2 2 2
#> 286 69 20 44 1 2 3
#> 287 89 6 57 2 1 3
#> 288 83 5 48 2 1 3
#> 289 83 48 56 2 3 3
#> 290 67 168 40 1 9 3
#> 291 84 6 61 2 1 4
#> 292 90 8 63 2 1 4
#> 293 80 43 59 2 3 3
#> 294 81 90 69 2 5 4
#> 295 87 100 60 2 6 4
#> 296 73 8 49 1 1 3
#> 297 71 15 41 1 1 3
#> 298 80 5 72 2 1 4
#> 299 69 8 64 1 1 4
#> 300 73 10 46 1 1 3
#> 301 88 30 64 2 2 4
#> 302 73 168 79 1 9 4
#> 303 78 20 39 1 2 2
#> 304 86 30 42 2 2 3
#> 305 75 30 39 1 2 2
#> 306 89 12 42 2 1 3
#> 307 83 30 54 2 2 3
#> 308 78 30 76 1 2 4
#> 309 69 14 69 1 1 4
#> 310 70 15 68 1 1 4
#> 311 86 50 66 2 3 4
#> 312 67 20 35 1 2 2
#> 313 74 25 30 1 2 2
#> 314 87 40 54 2 3 3
#> 315 66 9 56 1 1 3
#> 316 68 18 60 1 1 4
#> 317 72 25 26 1 2 2
#> 318 80 100 68 2 6 4
#> 319 89 6 51 2 1 3
#> 320 84 25 54 2 2 3
#> 321 93 15 52 2 1 3
#> 322 86 20 53 2 2 3
#> 323 84 10 54 2 1 3
#> 324 86 28 52 2 2 3
#> 325 83 10 48 2 1 3
#> 326 86 30 46 2 2 3
#> 327 88 6 68 2 1 4
#> 328 75 40 49 1 3 3
#> 329 76 7 19 1 1 1
#> 330 NA 8 49 NA 1 3
#> 331 81 15 33 2 1 2
#> 332 78 4 42 1 1 3
#> 333 83 4 34 2 1 2
#> 334 94 168 66 2 9 4
#> 335 84 7 27 2 1 2
#> 336 71 22 37 1 2 2
#> 337 86 30 54 2 2 3
#> 338 89 15 65 2 1 4
#> 339 93 30 72 2 2 4
#> 340 75 20 40 1 2 3
#> 341 73 25 26 1 2 2
#> 342 70 20 29 1 2 2
#> 343 75 20 30 1 2 2
#> 344 NA 25 30 NA 2 2
#> 345 75 14 33 1 1 2
#> 346 103 30 42 3 2 3
#> 347 70 20 51 1 2 3
#> 348 84 15 54 2 1 3
#> 349 78 6 38 1 1 2
#> 350 85 5 40 2 1 3
#> 351 81 50 50 2 3 3
#> 352 90 8 66 2 1 4
#> 353 76 20 44 1 2 3
#> 354 75 14 42 1 1 3
#> 355 74 18 43 1 1 3
#> 356 75 16 55 1 1 3
#> 357 89 20 67 2 2 4
#> 358 73 15 23 1 1 2
#> 359 79 25 70 1 2 4
#> 360 83 18 62 2 1 4
#> 361 91 22 66 2 2 4
#> 362 81 18 59 2 1 3
#> 363 77 48 76 1 3 4
#> 364 65 60 44 1 4 3
#> 365 73 10 42 1 1 3
#> 366 73 7 53 1 1 3
#> 367 69 5 44 1 1 3
#> 368 79 35 62 1 2 4
#> 369 82 28 53 2 2 3
#> 370 76 5 58 1 1 3
#> 371 84 25 38 2 2 2
#> 372 86 40 48 2 3 3
#> 373 88 49 52 2 3 3
#> 374 76 4 53 1 1 3
#> 375 94 70 67 2 4 4
#> 376 78 6 54 1 1 3
#> 377 67 7 31 1 1 2
#> 378 81 40 51 2 3 3
#> 379 69 50 48 1 3 3
#> 380 77 30 52 1 2 3
#> 381 73 70 45 1 4 3
#> 382 70 14 47 1 1 3
#> 383 82 70 42 2 4 3
#> 384 93 7 65 2 1 4
#> 385 81 6 49 2 1 3
#> 386 70 14 46 1 1 3
#> 387 78 10 65 1 1 4
#> 388 84 25 47 2 2 3
#> 389 83 5 54 2 1 3
#> 390 82 11 49 2 1 3
#> 391 85 120 47 2 7 3
#> 392 83 18 59 2 1 3
#> 393 68 6 69 1 1 4
#> 394 70 20 34 1 2 2
#> 395 76 15 30 1 1 2
#> 396 73 35 70 1 2 4
#> 397 76 15 32 1 1 2
#> 398 80 15 41 2 1 3
#> 399 67 120 63 1 7 4
#> 400 77 28 83 1 2 5
#> 401 79 10 44 1 1 3
#> 402 72 120 70 1 7 4
#> 403 90 100 56 2 6 3
#> 404 90 18 64 2 1 4
#> 405 66 8 43 1 1 3
#> 406 80 40 53 2 3 3
#> 407 81 140 55 2 8 3
#> 408 85 6 46 2 1 3
#> 409 83 11 64 2 1 4
#> 410 85 15 57 2 1 3
#> 411 84 80 60 2 5 4
#> 412 65 5 42 1 1 3
#> 413 71 6 63 1 1 4
#> 414 68 40 68 1 3 4
#> 415 65 5 67 1 1 4
#> 416 73 7 69 1 1 4
#> 417 68 4 52 1 1 3
#> 418 67 24 60 1 2 4
#> 419 73 28 48 1 2 3
#> 420 84 25 60 2 2 4
#> 421 98 140 67 2 8 4
#> 422 78 14 36 1 1 2
#> 423 82 40 75 2 3 4
#> 424 89 5 29 2 1 2
#> 425 84 20 47 2 2 3
#> 426 70 168 62 1 9 4
#> 427 78 40 59 1 3 3
#> 428 82 80 51 2 5 3
#> 429 94 120 34 2 7 2
#> 430 89 160 59 2 9 3
#> 431 73 7 31 1 1 2
#> 432 80 7 37 2 1 2
#> 433 84 4 61 2 1 4
#> 434 78 6 53 1 1 3
#> 435 83 14 89 2 1 5
#> 436 77 7 53 1 1 3
#> 437 82 28 46 2 2 3
#> 438 81 25 59 2 2 3
#> 439 72 28 74 1 2 4
#> 440 88 7 50 2 1 3
#> 441 80 21 50 2 2 3
#> 442 79 30 53 1 2 3
#> 443 66 25 55 1 2 3
#> 444 86 65 51 2 4 3
#> 445 85 18 43 2 1 3
#> 446 79 40 43 1 3 3
#> 447 84 20 59 2 2 3
#> 448 NA 80 72 NA 5 4
#> 449 87 7 56 2 1 3
#> 450 71 50 66 1 3 4
#> 451 71 30 47 1 2 3
#> 452 76 10 45 1 1 3
#> 453 80 8 NA 2 1 NA
#> 454 81 6 23 2 1 2
#> 455 90 6 25 2 1 2
#> 456 82 42 57 2 3 3
#> 457 77 10 53 1 1 3
#> 458 95 30 64 2 2 4
#> 459 86 15 56 2 1 3
#> 460 82 10 41 2 1 3
#> 461 90 10 58 2 1 3
#> 462 79 130 76 1 7 4
#> 463 95 160 69 2 9 4
#> 464 87 168 56 2 9 3
#> 465 78 24 75 1 2 4
#> 466 83 24 53 2 2 3
#> 467 75 30 53 1 2 3
#> 468 80 20 58 2 2 3
#> 469 72 10 48 1 1 3
#> 470 76 7 35 1 1 2
#> 471 84 120 59 2 7 3
#> 472 66 6 34 1 1 2
#> 473 77 6 39 1 1 2
#> 474 84 10 56 2 1 3
#> 475 68 20 60 1 2 4
#> 476 78 5 43 1 1 3
#> 477 65 60 56 1 4 3
#> 478 72 20 38 1 2 2
#> 479 67 6 54 1 1 3
#> 480 78 10 25 1 1 2
#> 481 67 84 66 1 5 4
#> 482 82 8 58 2 1 3
#> 483 75 168 75 1 9 4
#> 484 82 40 30 2 3 2
#> 485 79 40 42 1 3 3
#> 486 76 20 38 1 2 2
#> 487 89 56 63 2 3 4
#> 488 92 6 57 2 1 3
#> 489 66 7 41 1 1 3
#> 490 89 12 64 2 1 4
#> 491 79 10 32 1 1 2
#> 492 73 14 38 1 1 2
#> 493 89 28 65 2 2 4
#> 494 79 12 31 1 1 2
#> 495 NA 28 43 NA 2 3
#> 496 81 11 29 2 1 2
#> 497 84 16 62 2 1 4
#> 498 77 12 46 1 1 3
#> 499 73 22 43 1 2 3
#> 500 79 17 44 1 1 3
#> 501 73 16 47 1 1 3
#> 502 80 50 49 2 3 3
#> 503 73 6 46 1 1 3
#> 504 88 5 46 2 1 3
#> 505 82 45 60 2 3 4
#> 506 93 16 65 2 1 4
#> 507 70 15 32 1 1 2
#> 508 69 20 72 1 2 4
#> 509 70 20 35 1 2 2
#> 510 86 8 61 2 1 4
#> 511 75 8 66 1 1 4
#> 512 81 15 53 2 1 3
#> 513 65 10 35 1 1 2
#> 514 86 15 57 2 1 3
#> 515 91 27 62 2 2 4
#> 516 72 14 70 1 1 4
#> 517 87 28 53 2 2 3
#> 518 77 168 78 1 9 4
#> 519 65 168 65 1 9 4
#> 520 81 21 58 2 2 3
#> 521 72 12 62 1 1 4
#> 522 93 62 48 2 4 3
#> 523 65 20 51 1 2 3
#> 524 77 7 35 1 1 2
#> 525 77 10 59 1 1 3
#> 526 76 20 42 1 2 3
#> 527 85 8 52 2 1 3
#> 528 79 9 49 1 1 3
#> 529 82 12 46 2 1 3
#> 530 83 10 56 2 1 3
#> 531 86 35 51 2 2 3
#> 532 71 5 45 1 1 3
#> 533 75 18 50 1 1 3
#> 534 83 15 48 2 1 3
#> 535 78 6 41 1 1 3
#> 536 74 8 48 1 1 3
#> 537 88 12 40 2 1 3
#> 538 86 25 29 2 2 2
#> 539 82 10 50 2 1 3
#> 540 89 40 48 2 3 3
#> 541 91 20 63 2 2 4
#> 542 90 6 54 2 1 3
#> 543 77 168 65 1 9 4
#> 544 65 4 52 1 1 3
#> 545 69 168 41 1 9 3
#> 546 68 24 44 1 2 3
#> 547 70 25 53 1 2 3
#> 548 82 40 62 2 3 4
#> 549 77 18 42 1 1 3
#> 550 82 20 31 2 2 2
#> 551 69 40 40 1 3 3
#> 552 81 6 44 2 1 3
#> 553 86 5 50 2 1 3
#> 554 85 30 49 2 2 3
#> 555 67 14 24 1 1 2
#> 556 70 8 43 1 1 3
#> 557 78 28 61 1 2 4
#> 558 83 45 35 2 3 2
#> 559 81 40 40 2 3 3
#> 560 74 30 53 1 2 3
#> 561 78 28 58 1 2 3
#> 562 83 50 48 2 3 3
#> 563 69 84 65 1 5 4
#> 564 97 12 61 2 1 4
#> 565 70 40 31 1 3 2
#> 566 92 10 58 2 1 3
#> 567 91 15 53 2 1 3
#> 568 65 40 63 1 3 4
#> 569 NA 24 80 NA 2 5
#> 570 94 168 61 2 9 4
#> 571 69 160 46 1 9 3
#> 572 78 162 75 1 9 4
#> 573 87 100 49 2 6 3
#> 574 82 110 48 2 6 3
#> 575 84 140 62 2 8 4
#> 576 79 25 49 1 2 3
#> 577 85 15 49 2 1 3
#> 578 65 35 60 1 2 4
#> 579 76 30 27 1 2 2
#> 580 65 40 63 1 3 4
#> 581 78 10 57 1 1 3
#> 582 91 25 56 2 2 3
#> 583 88 12 63 2 1 4
#> 584 83 35 78 2 2 4
#> 585 73 10 36 1 1 2
#> 586 79 30 59 1 2 3
#> 587 86 10 62 2 1 4
#> 588 82 100 42 2 6 3
#> 589 75 12 54 1 1 3
#> 590 66 56 64 1 3 4
#> 591 93 40 65 2 3 4
#> 592 86 30 52 2 2 3
#> 593 86 60 78 2 4 4
#> 594 69 100 47 1 6 3
#> 595 66 20 67 1 2 4
#> 596 83 35 28 2 2 2
#> 597 65 168 43 1 9 3
#> 598 71 22 40 1 2 3
#> 599 83 60 53 2 4 3
#> 600 92 24 28 2 2 2
#> 601 83 20 78 2 2 4
#> 602 95 70 58 2 4 3
#> 603 76 25 43 1 2 3
#> 604 81 6 54 2 1 3
#> 605 79 18 28 1 1 2
#> 606 87 10 57 2 1 3
#> 607 74 15 47 1 1 3
#> 608 70 20 35 1 2 2
#> 609 80 20 30 2 2 2
#> 610 75 10 50 1 1 3
#> 611 68 22 36 1 2 2
#> 612 69 15 38 1 1 2
#> 613 68 48 58 1 3 3
#> 614 70 80 33 1 5 2
#> 615 89 77 59 2 4 3
#> 616 NA 6 30 NA 1 2
#> 617 83 6 24 2 1 2
#> 618 70 8 30 1 1 2
#> 619 82 20 39 2 2 2
#> 620 84 20 40 2 2 3
#> 621 82 8 51 2 1 3
#> 622 80 6 49 2 1 3
#> 623 86 8 60 2 1 4
#> 624 69 15 35 1 1 2
#> 625 87 10 53 2 1 3
#> 626 71 10 35 1 1 2
#> 627 66 15 39 1 1 2
#> 628 85 8 54 2 1 3
#> 629 85 6 65 2 1 4
#> 630 95 56 63 2 3 4
#> 631 76 6 53 1 1 3
#> 632 69 8 64 1 1 4
#> 633 68 28 43 1 2 3
#> 634 82 20 58 2 2 3
#> 635 92 70 67 2 4 4
#> 636 66 8 30 1 1 2
#> 637 74 7 24 1 1 2
#> 638 75 10 56 1 1 3
#> 639 90 10 44 2 1 3
#> 640 72 10 69 1 1 4
#> 641 92 168 31 2 9 2
#> 642 70 40 63 1 3 4
#> 643 79 40 44 1 3 3
#> 644 79 30 42 1 2 3
#> 645 69 30 42 1 2 3
#> 646 70 28 41 1 2 3
#> 647 82 14 77 2 1 4
#> 648 79 40 47 1 3 3
#> 649 72 10 70 1 1 4
#> 650 76 4 22 1 1 2
#> 651 65 14 37 1 1 2
#> 652 92 42 64 2 3 4
#> 653 70 42 50 1 3 3
#> 654 89 65 69 2 4 4
#> 655 72 5 44 1 1 3
#> 656 75 10 47 1 1 3
#> 657 73 45 41 1 3 3
#> 658 82 55 55 2 3 3
#> 659 80 50 60 2 3 4
#> 660 82 35 56 2 2 3
#> 661 82 40 66 2 3 4
#> 662 71 15 46 1 1 3
#> 663 77 8 55 1 1 3
#> 664 73 25 40 1 2 3
#> 665 80 5 51 2 1 3
#> 666 71 5 37 1 1 2
#> 667 65 4 58 1 1 3
#> 668 83 14 57 2 1 3
#> 669 67 20 25 1 2 2
#> 670 68 10 43 1 1 3
#> 671 71 50 69 1 3 4
#> 672 77 16 35 1 1 2
#> 673 72 22 48 1 2 3
#> 674 68 100 66 1 6 4
#> 675 77 100 44 1 6 3
#> 676 70 30 74 1 2 4
#> 677 84 120 77 2 7 4
#> 678 89 100 61 2 6 4
#> 679 68 10 41 1 1 3
#> 680 89 120 64 2 7 4
#> 681 68 6 20 1 1 2
#> 682 72 6 27 1 1 2
#> 683 78 5 53 1 1 3
#> 684 84 10 51 2 1 3
#> 685 92 9 54 2 1 3
#> 686 68 9 69 1 1 4
#> 687 66 12 43 1 1 3
#> 688 71 20 69 1 2 4
#> 689 65 10 70 1 1 4
#> 690 81 160 60 2 9 4
#> 691 82 100 48 2 6 3
#> 692 75 20 33 1 2 2
#> 693 80 56 57 2 3 3
#> 694 70 7 37 1 1 2
#> 695 91 35 43 2 2 3
#> 696 94 120 73 2 7 4
#> 697 66 60 61 1 4 4
#> 698 87 10 54 2 1 3
#> 699 86 14 57 2 1 3
#> 700 83 21 46 2 2 3
#> 701 73 10 54 1 1 3
#> 702 70 7 48 1 1 3
#> 703 73 18 70 1 1 4
#> 704 83 4 49 2 1 3
#> 705 76 8 47 1 1 3
#> 706 90 10 64 2 1 4
#> 707 72 6 48 1 1 3
#> 708 78 10 71 1 1 4
#> 709 71 30 66 1 2 4
#> 710 72 10 56 1 1 3
#> 711 86 9 46 2 1 3
#> 712 70 36 62 1 2 4
#> 713 67 15 49 1 1 3
#> 714 65 35 55 1 2 3
#> 715 74 21 47 1 2 3
#> 716 76 168 47 1 9 3
#> 717 79 168 43 1 9 3
#> 718 66 10 61 1 1 4
#> 719 73 6 45 1 1 3
#> 720 90 20 55 2 2 3
#> 721 68 6 33 1 1 2
#> 722 67 8 46 1 1 3
#> 723 86 15 51 2 1 3
#> 724 79 84 49 1 5 3
#> 725 75 45 48 1 3 3
#> 726 85 40 63 2 3 4
#> 727 77 90 68 1 5 4
#> 728 79 35 52 1 2 3
#> 729 93 70 68 2 4 4
#> 730 80 5 18 2 1 1
#> 731 77 20 52 1 2 3
#> 732 81 35 58 2 2 3
#> 733 80 8 56 2 1 3
#> 734 86 30 47 2 2 3
#> 735 67 4 60 1 1 4
#> 736 91 84 55 2 5 3
#> 737 72 10 68 1 1 4
#> 738 82 25 59 2 2 3
#> 739 94 60 65 2 4 4
#> 740 89 6 64 2 1 4
#> 741 83 26 52 2 2 3
#> 742 75 12 54 1 1 3
#> 743 89 25 50 2 2 3
#> 744 80 15 49 2 1 3
#> 745 84 50 73 2 3 4
#> 746 77 18 44 1 1 3
#> 747 75 12 35 1 1 2
#> 748 79 22 44 1 2 3
#> 749 85 21 50 2 2 3
#> 750 87 70 58 2 4 3
#> 751 82 168 71 2 9 4
#> 752 90 5 60 2 1 4
#> 753 83 30 49 2 2 3
#> 754 85 70 62 2 4 4
#> 755 80 168 59 2 9 3
#> 756 66 9 57 1 1 3
#> 757 79 6 50 1 1 3
#> 758 91 4 64 2 1 4
#> 759 89 20 48 2 2 3
#> 760 69 8 56 1 1 3
#> 761 73 14 52 1 1 3
#> 762 83 9 58 2 1 3
#> 763 79 6 69 1 1 4
#> 764 85 14 44 2 1 3
#> 765 81 7 60 2 1 4
#> 766 85 6 19 2 1 1
#> 767 66 20 63 1 2 4
#> 768 74 20 35 1 2 2
#> 769 73 48 69 1 3 4
#> 770 76 10 44 1 1 3
#> 771 83 5 58 2 1 3
#> 772 78 6 42 1 1 3
#> 773 88 8 65 2 1 4
#> 774 89 8 53 2 1 3
#> 775 84 8 53 2 1 3
#> 776 73 8 41 1 1 3
#> 777 92 4 67 2 1 4
#> 778 65 4 33 1 1 2
#> 779 69 8 39 1 1 2
#> 780 77 25 73 1 2 4
#> 781 79 20 56 1 2 3
#> 782 73 6 50 1 1 3
#> 783 68 21 45 1 2 3
#> 784 69 28 51 1 2 3
#> 785 80 70 49 2 4 3
#> 786 81 8 34 2 1 2
#> 787 67 21 47 1 2 3
#> 788 74 28 50 1 2 3
#> 789 88 14 49 2 1 3
#> 790 70 4 37 1 1 2
#> 791 73 5 46 1 1 3
#> 792 67 6 52 1 1 3
#> 793 74 7 70 1 1 4
#> 794 87 140 62 2 8 4
#> 795 91 4 23 2 1 2
#> 796 76 8 22 1 1 2
#> 797 87 7 21 2 1 2
#> 798 72 8 48 1 1 3
#> 799 77 7 52 1 1 3
#> 800 89 30 41 2 2 3
#> 801 84 40 68 2 3 4
#> 802 78 50 32 1 3 2
#> 803 81 35 50 2 2 3
#> 804 74 42 68 1 3 4
#> 805 80 40 55 2 3 3
#> 806 77 168 70 1 9 4
#> 807 79 150 69 1 8 4
#> 808 89 168 63 2 9 4
#> 809 90 168 77 2 9 4
#> 810 87 168 77 2 9 4
#> 811 81 14 29 2 1 2
#> 812 82 6 33 2 1 2
#> 813 71 8 43 1 1 3
#> 814 75 22 54 1 2 3
#> 815 69 10 38 1 1 2
#> 816 77 6 45 1 1 3
#> 817 81 30 70 2 2 4
#> 818 87 8 53 2 1 3
#> 819 73 10 53 1 1 3
#> 820 65 10 35 1 1 2
#> 821 68 12 42 1 1 3
#> 822 72 20 40 1 2 3
#> 823 70 15 36 1 1 2
#> 824 68 20 32 1 2 2
#> 825 70 15 39 1 1 2
#> 826 68 20 40 1 2 3
#> 827 69 25 35 1 2 2
#> 828 78 7 49 1 1 3
#> 829 74 4 47 1 1 3
#> 830 68 20 44 1 2 3
#> 831 86 10 38 2 1 2
#> 832 79 50 70 1 3 4
#> 833 75 20 55 1 2 3
#> 834 85 25 52 2 2 3
#> 835 71 5 48 1 1 3
#> 836 74 7 47 1 1 3
#> 837 74 5 62 1 1 4
#> 838 86 12 57 2 1 3
#> 839 66 35 20 1 2 2
#> 840 70 35 29 1 2 2
#> 841 86 30 33 2 2 2
#> 842 85 40 60 2 3 4
#> 843 82 15 58 2 1 3
#> 844 79 10 44 1 1 3
#> 845 69 8 43 1 1 3
#> 846 67 5 41 1 1 3
#> 847 94 14 56 2 1 3
#> 848 75 14 48 1 1 3
#> 849 79 6 47 1 1 3
#> 850 78 14 44 1 1 3
#> 851 66 7 39 1 1 2
#> 852 65 20 31 1 2 2
#> 853 88 6 47 2 1 3
#> 854 78 10 35 1 1 2
#> 855 83 30 46 2 2 3
#> 856 87 14 31 2 1 2
#> 857 99 10 44 2 1 3
#> 858 66 10 34 1 1 2
#> 859 89 28 58 2 2 3
#> 860 71 8 37 1 1 2
#> 861 82 6 43 2 1 3
#> 862 69 20 45 1 2 3
#> 863 81 5 54 2 1 3
#> 864 84 7 57 2 1 3
#> 865 90 20 57 2 2 3
#> 866 80 18 28 2 1 2
#> 867 79 12 62 1 1 4
#> 868 67 17 64 1 1 4
#> 869 71 14 48 1 1 3
#> 870 75 5 38 1 1 2
#> 871 68 6 38 1 1 2
#> 872 75 4 33 1 1 2
#> 873 73 4 49 1 1 3
#> 874 81 6 42 2 1 3
#> 875 76 10 55 1 1 3
#> 876 65 6 45 1 1 3
#> 877 83 14 68 2 1 4
#> 878 79 30 39 1 2 2
#> 879 73 35 79 1 2 4
#> 880 78 10 48 1 1 3
#> 881 83 100 49 2 6 3
#> 882 74 8 34 1 1 2
#> 883 81 10 53 2 1 3
#> 884 87 20 65 2 2 4
#> 885 67 40 39 1 3 2
#> 886 79 40 74 1 3 4
#> 887 81 40 76 2 3 4
#> 888 70 6 41 1 1 3
#> 889 65 30 61 1 2 4
#> 890 93 28 61 2 2 4
#> 891 74 20 40 1 2 3
#> 892 77 25 45 1 2 3
#> 893 75 30 36 1 2 2
#> 894 90 50 60 2 3 4
#> 895 91 20 50 2 2 3
#> 896 86 15 55 2 1 3
#> 897 65 110 38 1 6 2
#> 898 82 28 82 2 2 5
#> 899 80 85 36 2 5 2
#> 900 74 160 71 1 9 4
#> 901 65 10 44 1 1 3
#> 902 67 8 45 1 1 3
#> 903 NA NA NA NA NA NA
#> 904 NA NA NA NA NA NA
#> 905 NA NA NA NA NA NA
#> 906 NA NA NA NA NA NA
#> 907 NA NA NA NA NA NA
#> 908 NA NA NA NA NA NA
# create vector with values from 50 to 80
dummy <- round(runif(200, 50, 80))
# labels with grouping starting at lower bound
group_labels(dummy)
#> [1] "50-54" "55-59" "60-64" "65-69" "70-74" "75-79" "80-84"
# labels with grouping startint at upper bound
group_labels(dummy, right.interval = TRUE)
#> [1] "46-50" "51-55" "56-60" "61-65" "66-70" "71-75" "76-80"
# works also with gouped data frames
mtcars %>%
group_var(disp, size = 4, append = FALSE) %>%
table()
#> disp_gr
#> 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
#> 1 1 2 1 1 3 1 2 2 2 1 1 3 1 1 1 2 2 1 1 1 1
mtcars %>%
group_by(cyl) %>%
group_var(disp, size = 4, append = FALSE) %>%
table()
#> disp_gr
#> 1 2 3 4 5 6 7 8 9 10
#> 5 4 5 3 4 5 2 2 1 1