A generic print-method for ggeffects
-objects.
Usage
# S3 method for class 'ggeffects'
format(
x,
variable_labels = FALSE,
value_labels = FALSE,
group_name = FALSE,
row_header_separator = ", ",
digits = 2,
collapse_ci = FALSE,
collapse_tables = FALSE,
n,
...
)
# S3 method for class 'ggcomparisons'
format(x, collapse_ci = FALSE, collapse_p = FALSE, combine_levels = FALSE, ...)
# S3 method for class 'ggeffects'
print(x, group_name = TRUE, digits = 2, verbose = TRUE, ...)
# S3 method for class 'ggeffects'
print_md(x, group_name = TRUE, digits = 2, ...)
# S3 method for class 'ggeffects'
print_html(
x,
group_name = TRUE,
digits = 2,
theme = NULL,
engine = c("tt", "gt"),
...
)
# S3 method for class 'ggcomparisons'
print(x, collapse_tables = FALSE, ...)
# S3 method for class 'ggcomparisons'
print_html(
x,
collapse_ci = FALSE,
collapse_p = FALSE,
theme = NULL,
engine = c("tt", "gt"),
...
)
# S3 method for class 'ggcomparisons'
print_md(x, collapse_ci = FALSE, collapse_p = FALSE, theme = NULL, ...)
Arguments
- x
An object of class
ggeffects
, as returned by the functions from this package.- variable_labels
Logical, if
TRUE
variable labels are used as column headers. IfFALSE
, variable names are used.- value_labels
Logical, if
TRUE
, value labels are used as values in the table output. IfFALSE
, the numeric values or factor levels are used.- group_name
Logical, if
TRUE
, the name of further focal terms are used in the sub-headings of the table. IfFALSE
, only the values of the focal terms are used.- row_header_separator
Character, separator between the different subgroups in the table output.
- digits
Number of digits to print.
- collapse_ci
Logical, if
TRUE
, the columns with predicted values and confidence intervals are collapsed into one column, e.g.Predicted (95% CI)
.- collapse_tables
Logical, if
TRUE
, all tables are combined into one. The tables are not split by further focal terms, but rather are added as columns. Only works when there is more than one focal term.- n
Number of rows to print per subgroup. If
NULL
, a default number of rows is printed, depending on the number of subgroups.- ...
Further arguments passed down to
format.ggeffects()
, some of them are also passed down further toinsight::format_table()
orinsight::format_value()
.- collapse_p
Logical, if
TRUE
, the columns with predicted values and p-values are collapsed into one column, where significant p-values are indicated as asterisks.- combine_levels
Logical, if
TRUE
, the levels of the first comparison of each focal term against the second are combined into one column. This is useful when comparing multiple focal terms, e.g.education = low-high
andgender = male-female
are combined intofirst = low-male
andsecond = high-female
.- verbose
Toggle messages.
- theme
The theme to apply to the table. One of
"grid"
,"striped"
,"bootstrap"
, or"darklines"
.- engine
The engine to use for printing. One of
"tt"
(default) or"gt"
."tt"
uses the tinytable package,"gt"
uses the gt package.
Value
format()
return a formatted data frame, print()
prints a formatted
data frame printed to the console. print_html()
returns a tinytable
object by default (unless changed with engine = "gt"
), which is printed as
HTML, markdown or LaTeX table (depending on the context from which
print_html()
is called, see tinytable::tt()
for details).
Global Options to Customize Tables when Printing
The verbose
argument can be used to display or silence messages and
warnings. Furthermore, options()
can be used to set defaults for the
print()
and print_html()
method. The following options are available,
which can simply be run in the console:
ggeffects_ci_brackets
: Define a character vector of length two, indicating the opening and closing parentheses that encompass the confidence intervals values, e.g.options(ggeffects_ci_brackets = c("[", "]"))
.ggeffects_collapse_ci
: Logical, ifTRUE
, the columns with predicted values (or contrasts) and confidence intervals are collapsed into one column, e.g.options(ggeffects_collapse_ci = TRUE)
.ggeffects_collapse_p
: Logical, ifTRUE
, the columns with predicted values (or contrasts) and p-values are collapsed into one column, e.g.options(ggeffects_collapse_p = TRUE)
. Note that p-values are replaced by asterisk-symbols (stars) or empty strings whenggeffects_collapse_p = TRUE
, depending on the significance level.ggeffects_collapse_tables
: Logical, ifTRUE
, multiple tables for subgroups are combined into one table. Only works when there is more than one focal term, e.g.options(ggeffects_collapse_tables = TRUE)
.ggeffects_output_format
: String, either"text"
,"markdown"
or"html"
. Defines the default output format frompredict_response()
. If"html"
, a formatted HTML table is created and printed to the view pane."markdown"
creates a markdown-formatted table inside Rmarkdown documents, and prints a text-format table to the console when used interactively. If"text"
orNULL
, a formatted table is printed to the console, e.g.options(ggeffects_output_format = "html")
.ggeffects_html_engine
: String, either"tt"
or"gt"
. Defines the default engine to use for printing HTML tables. If"tt"
, the tinytable package is used, if"gt"
, the gt package is used, e.g.options(ggeffects_html_engine = "gt")
.
Use options(<option_name> = NULL)
to remove the option.
Examples
data(efc, package = "ggeffects")
fit <- lm(barthtot ~ c12hour + e42dep, data = efc)
# default print
predict_response(fit, "e42dep")
#> # Predicted values of Total score BARTHEL INDEX
#>
#> e42dep | Predicted | 95% CI
#> -----------------------------------
#> 1 | 104.42 | 101.21, 107.64
#> 2 | 83.81 | 81.91, 85.72
#> 3 | 63.20 | 61.94, 64.47
#> 4 | 42.59 | 40.54, 44.65
#>
#> Adjusted for:
#> * c12hour = 42.25
# surround CI values with parentheses
print(predict_response(fit, "e42dep"), ci_brackets = c("(", ")"))
#> # Predicted values of Total score BARTHEL INDEX
#>
#> e42dep | Predicted | 95% CI
#> -------------------------------------
#> 1 | 104.42 | (101.21, 107.64)
#> 2 | 83.81 | ( 81.91, 85.72)
#> 3 | 63.20 | ( 61.94, 64.47)
#> 4 | 42.59 | ( 40.54, 44.65)
#>
#> Adjusted for:
#> * c12hour = 42.25
# you can also use `options(ggeffects_ci_brackets = c("[", "]"))`
# to set this globally
# collapse CI columns into column with predicted values
print(predict_response(fit, "e42dep"), collapse_ci = TRUE)
#> # Predicted values of Total score BARTHEL INDEX
#>
#> e42dep | Predicted (95% CI)
#> --------------------------------
#> 1 | 104.42 (101.21, 107.64)
#> 2 | 83.81 (81.91, 85.72)
#> 3 | 63.20 (61.94, 64.47)
#> 4 | 42.59 (40.54, 44.65)
#>
#> Adjusted for:
#> * c12hour = 42.25
# include value labels
print(predict_response(fit, "e42dep"), value_labels = TRUE)
#> # Predicted values of Total score BARTHEL INDEX
#>
#> e42dep | Predicted | 95% CI
#> -----------------------------------------------------
#> [1] independent | 104.42 | 101.21, 107.64
#> [2] slightly dependent | 83.81 | 81.91, 85.72
#> [3] moderately dependent | 63.20 | 61.94, 64.47
#> [4] severely dependent | 42.59 | 40.54, 44.65
#>
#> Adjusted for:
#> * c12hour = 42.25
# include variable labels in column headers
print(predict_response(fit, "e42dep"), variable_labels = TRUE)
#> # Predicted values of Total score BARTHEL INDEX
#>
#> elder's dependency | Predicted values of Total score BARTHEL INDEX | 95% CI
#> -----------------------------------------------------------------------------------
#> 1 | 104.42 | 101.21, 107.64
#> 2 | 83.81 | 81.91, 85.72
#> 3 | 63.20 | 61.94, 64.47
#> 4 | 42.59 | 40.54, 44.65
#>
#> Adjusted for:
#> * c12hour = 42.25
# include value labels and variable labels
print(predict_response(fit, "e42dep"), variable_labels = TRUE, value_labels = TRUE)
#> # Predicted values of Total score BARTHEL INDEX
#>
#> elder's dependency | Predicted values of Total score BARTHEL INDEX | 95% CI
#> -----------------------------------------------------------------------------------------
#> [1] independent | 104.42 | 101.21, 107.64
#> [2] slightly dependent | 83.81 | 81.91, 85.72
#> [3] moderately dependent | 63.20 | 61.94, 64.47
#> [4] severely dependent | 42.59 | 40.54, 44.65
#>
#> Adjusted for:
#> * c12hour = 42.25
data(iris)
m <- lm(Sepal.Length ~ Species * Petal.Length, data = iris)
# default print with subgroups
predict_response(m, c("Petal.Length", "Species"))
#> # Predicted values of Sepal.Length
#>
#> Species: setosa
#>
#> Petal.Length | Predicted | 95% CI
#> --------------------------------------
#> 1.00 | 4.76 | 4.49, 5.03
#> 2.00 | 5.30 | 4.99, 5.61
#> 3.00 | 5.84 | 4.99, 6.69
#> 4.00 | 6.38 | 4.99, 7.77
#> 5.00 | 6.92 | 4.99, 8.86
#> 7.00 | 8.01 | 4.98, 11.04
#>
#> Species: versicolor
#>
#> Petal.Length | Predicted | 95% CI
#> --------------------------------------
#> 1.00 | 3.24 | 2.57, 3.90
#> 2.00 | 4.06 | 3.60, 4.53
#> 3.00 | 4.89 | 4.62, 5.16
#> 4.00 | 5.72 | 5.61, 5.83
#> 5.00 | 6.55 | 6.37, 6.73
#> 7.00 | 8.21 | 7.64, 8.77
#>
#> Species: virginica
#>
#> Petal.Length | Predicted | 95% CI
#> --------------------------------------
#> 1.00 | 2.06 | 1.27, 2.84
#> 2.00 | 3.05 | 2.43, 3.67
#> 3.00 | 4.05 | 3.60, 4.50
#> 4.00 | 5.04 | 4.76, 5.33
#> 5.00 | 6.04 | 5.90, 6.17
#> 7.00 | 8.03 | 7.76, 8.30
#>
#>
#> Not all rows are shown in the output. Use `print(..., n = Inf)` to show
#> all rows.
# omit name of grouping variable in subgroup table headers
print(predict_response(m, c("Petal.Length", "Species")), group_name = FALSE)
#> # Predicted values of Sepal.Length
#>
#> setosa
#>
#> Petal.Length | Predicted | 95% CI
#> --------------------------------------
#> 1.00 | 4.76 | 4.49, 5.03
#> 2.00 | 5.30 | 4.99, 5.61
#> 3.00 | 5.84 | 4.99, 6.69
#> 4.00 | 6.38 | 4.99, 7.77
#> 5.00 | 6.92 | 4.99, 8.86
#> 7.00 | 8.01 | 4.98, 11.04
#>
#> versicolor
#>
#> Petal.Length | Predicted | 95% CI
#> --------------------------------------
#> 1.00 | 3.24 | 2.57, 3.90
#> 2.00 | 4.06 | 3.60, 4.53
#> 3.00 | 4.89 | 4.62, 5.16
#> 4.00 | 5.72 | 5.61, 5.83
#> 5.00 | 6.55 | 6.37, 6.73
#> 7.00 | 8.21 | 7.64, 8.77
#>
#> virginica
#>
#> Petal.Length | Predicted | 95% CI
#> --------------------------------------
#> 1.00 | 2.06 | 1.27, 2.84
#> 2.00 | 3.05 | 2.43, 3.67
#> 3.00 | 4.05 | 3.60, 4.50
#> 4.00 | 5.04 | 4.76, 5.33
#> 5.00 | 6.04 | 5.90, 6.17
#> 7.00 | 8.03 | 7.76, 8.30
#>
#>
#> Not all rows are shown in the output. Use `print(..., n = Inf)` to show
#> all rows.
# collapse tables into one
print(predict_response(m, c("Petal.Length", "Species")), collapse_tables = TRUE, n = 3)
#> # Predicted values of Sepal.Length
#>
#> Petal.Length | Species | Predicted | 95% CI
#> ---------------------------------------------------
#> 1.00 | setosa | 4.76 | 4.49, 5.03
#> 3.00 | | 5.84 | 4.99, 6.69
#> 7.00 | | 8.01 | 4.98, 11.04
#> 1.00 | versicolor | 3.24 | 2.57, 3.90
#> 3.00 | | 4.89 | 4.62, 5.16
#> 7.00 | | 8.21 | 7.64, 8.77
#> 1.00 | virginica | 2.06 | 1.27, 2.84
#> 3.00 | | 4.05 | 3.60, 4.50
#> 7.00 | | 8.03 | 7.76, 8.30
#>
#>
#> Not all rows are shown in the output. Use `print(..., n = Inf)` to show
#> all rows.
# increase number of digits
print(predict_response(fit, "e42dep"), digits = 5)
#> # Predicted values of Total score BARTHEL INDEX
#>
#> e42dep | Predicted | 95% CI
#> -----------------------------------------
#> 1 | 104.42339 | 101.21081, 107.63598
#> 2 | 83.81330 | 81.90728, 85.71932
#> 3 | 63.20320 | 61.93656, 64.46985
#> 4 | 42.59311 | 40.53516, 44.65105
#>
#> Adjusted for:
#> * c12hour = 42.25