Package index
-
predict_response()
- Adjusted predictions and estimated marginal means from regression models
-
as.data.frame(<ggeffects>)
ggaverage()
ggeffect()
ggemmeans()
ggpredict()
- Adjusted predictions from regression models
-
pool_predictions()
- Pool Predictions or Estimated Marginal Means
-
johnson_neyman()
spotlight_analysis()
plot(<ggjohnson_neyman>)
- Spotlight-analysis: Create Johnson-Neyman confidence intervals and plots
-
test_predictions()
hypothesis_test()
- (Pairwise) comparisons between predictions (marginal effects)
-
pool_comparisons()
- Pool contrasts and comparisons from
test_predictions()
-
plot(<ggeffects>)
theme_ggeffects()
ggeffects_palette()
show_palettes()
- Plot ggeffects-objects
-
collapse_by_group()
- Collapse raw data by random effect groups
-
new_data()
data_grid()
- Create a data frame from all combinations of predictor values
-
pretty_range()
- Create a pretty sequence over a range of a vector
-
residualize_over_grid()
- Compute partial residuals from a data grid
-
values_at()
representative_values()
- Calculate representative values of a vector
-
format(<ggeffects>)
format(<ggcomparisons>)
print(<ggeffects>)
print_md(<ggeffects>)
print_html(<ggeffects>)
print(<ggcomparisons>)
print_html(<ggcomparisons>)
print_md(<ggcomparisons>)
- Print and format ggeffects-objects
-
reexports
print_html
print_md
- Objects exported from other packages
-
get_title()
get_x_title()
get_y_title()
get_legend_title()
get_legend_labels()
get_x_labels()
get_complete_df()
- Get titles and labels from data
-
get_predictions()
- S3-class definition for the ggeffects package
-
install_latest()
- Update latest ggeffects-version from R-universe (GitHub) or CRAN
-
vcov(<ggeffects>)
- Calculate variance-covariance matrix for adjusted predictions
-
coffee_data
- Sample dataset from a course about analysis of factorial designs
-
fish
- Sample data set
-
lung2
- Sample data set